

ADM-Aeolus – getting ready for CAL/VAL and the scientific exploitation

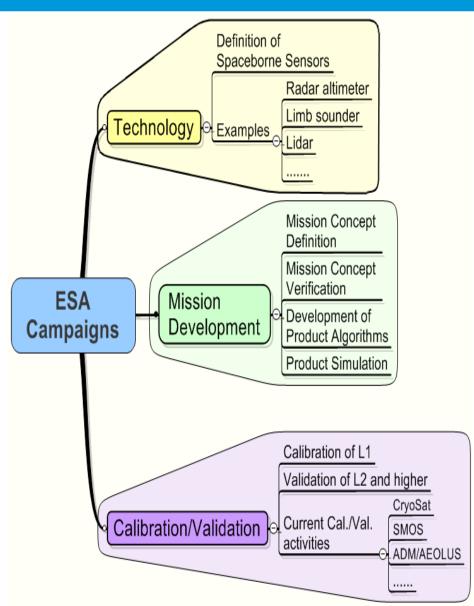

A.G. Straume¹, <u>D. Schuettemeyer¹</u>, F. de Bruin¹, T. Kanitz¹, A. Elfving¹, F. Buscaglione², A. Dehn², S. Casadio², W. Lengert²

¹ESA-ESTEC, The Netherlands ²ESA-ESRIN, Italy

Aeolus during flight, an artists impression

Why are ESA Earth Observation campaigns required?

- 1. Explore EO possibilities
- 2. Prove EO concepts
- 3. Develop interpretation
- 4. Develop calibration
- 5. Develop validation
- 6. Simulate data products
- 7. Check (validate) results
- 8. Develop applications



Programmatic Background

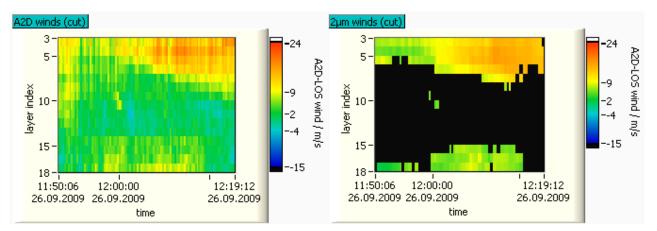
- 1. ESA campaign activities started in 1981
 - a. 110 campaigns as of May 2013
 - b. Typically 4-7 campaigns/year
- 2. Strategic objectives:
 - a. Support to EO programs
 - Transnational access to airborne instrumentation and data in Europe
 - c. Partnerships with national and international organisation
- 3. Campaign activities address three main areas:
 - a. Technology
 - b. Mission development
 - c. Calibration/validation
- 4. Campaign data archive supporting science and applications

Campaigns for different project phases

- 1. ESA campaigns are performed during all phases of a typical ESA space mission
- 2. Various types of campaigns are performed during certain periods of the lifecycle of a space mission

	Pre-Phase A	Phase A Feasibility	Phase B Design	Phase C/D Development	Phase E1 Commissioning	Phase E2 Operation	Data Archive
Technology	X	X					
Mission Development (Geophysical)	X	X	X	X			
Mission Development (Simulation)	X	X	X	X			
Cal/Val				X	X	X	
Science/ Applications						X	X

Aeolus campaigns in the Past


1. Objectives:

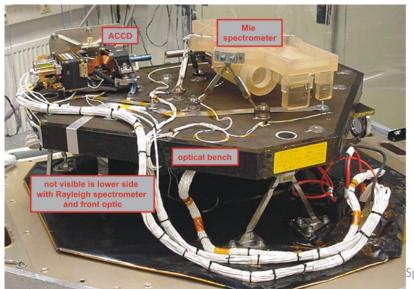
- a. Validation of the predicted instrument radiometric and wind measurement performance using the Aladin Airborne Demonstrator (A2D)
- b. Establishing a dataset of atmospheric measurements obtained with an Aeolus type Lidar to improve algorithm development

2. 2006 – 2009 A2D Campaigns:

- a. Two ground-based (2006, 2007) and three airborne (2007, 2008 and 2009)
- b. So far, on the order of 100 recommendations for the Aeolus mission (instrument and algorithm development and testing)
- c. First atmospheric measurements worldwide with a Fizeau and Double Fabry-Perot UV lidar system

Preliminary comparisons of A2D and DLR 2µm wind lidar measurements on-board the Falcon, near Greenland, 2009.
Courtesy: U. Marksteiner, DLR

peolus ADM-Aeolus technical objectives for a Pre-launch campaign


Airborne instrument must be as representative as possible to the satellite instrument

Several **new technologies** for ALADIN not used before in lidars

Space industry performs instrument characterization in a laboratory without signals from the real atmosphere

No proof of concept before with direct-detection wind lidar in downward looking

geometry as from space

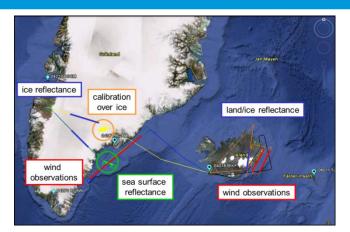

Space Agency

Fig.: Reitebuch et al., JTECH, 2009

ADM-Aeolus science objectives for a Pre-launch campaign

ADM Airborne Campaign in 2009

 Discussion and consolidation of objectives during ADM-Aeolus Mission Advisory Group in October 2013

Objectives for next pre-launch campaign

- Extend dataset on Rayleigh and Mie wind observations
 - highly variable conditions (vert./hor.) for wind
 - heterogeneous scenes wrt clouds
 - atmospheric scene with high aerosol backscatter
- Extend dataset on response calibrations over ice or land in nadir-pointing mode
- Rehearsal for airborne cal/val activity
- Science objectives, e.g. related to T-NAWDEX, or variability of UV albedo over ice
- => Baseline is a 2-weeks campaign from Iceland

Objectives for a campaign related to aeolus atmospheric dynamics over the North Atlantic

- North Atlantic is sensitive area for NWP; targeted observations to improve mediumrange weather forecast (e.g. Weissmann and Cardinali 2007)
- South tip of Greenland is windiest place on earth for ocean winds (Sampe and Xie 2007) => high sea surface winds observed from spaceborne scatterometers and radiometers; objectives related to scatterometer/lidar intercomparisons, and measurement of sea surface reflectance with lidar instruments (Li et al. 2010)
- Distortion of the flow by Greenland (Renfrew et al. 2008); investigation of Greenland Tip Jet (Doyle and Shapiro 1999, Moore and Renfrew 2005) and its relation to deep see convection (Pickart et al. 2003)
- Greenland as a hot spot for gravity wave excitation (Jiang et al. 2003, Leutbecher and Volkert 2000)
- Objectives related to THORPEX North Atlantic Waveguide Experiment T-NAWDEX in 2016 (see next slide)

Baseline Planning for Pre-Launch campaign

- Laser thermal test are on-going
- DLR Falcon aircraft equipped wit updated ALADIN airborne demonstrator A2D and 2-µm coherent wind lidar
- Perform test flights late 2014 with A2D from Oberpfaffenhofen, Germany
- Option to add science elements
- Airborne Campaign during April/May/June with A2D and 2µm wind lidar from Iceland
- Back-up for August/September 2014

Aeolus CAL/VAL AO call 2007

Aeolus CAL/VAL AO call, 2007:

- 1. Draft Phase E1 (and E) CAL/VAL plan and requirements established
- 2. Call open to experts/scientists worldwide
- 3. 16 (joint) proposals received and reviewed
- 4. 15 proposals were selected but now uncertain/no longer valid due to launch delays
- Ground-Based activities (e.g.)
 - Validation of ADM-Aeolus Winds using Radar or lidar data
 - Aerosol and cloud product validation using the European Aerosol Research Lidar Network EARLINET
- Airborne activities (e.g.)
 - Utilizing ALADIN or TwiLite
- Model studies (e.g.)
 - · Atmospheric model Comparison

Aeolus CAL/VAL AO delta-call 2014

Aeolus CAL/VAL AO call, 2007:

- 1. Draft Phase E1 (and E) CAL/VAL plan and requirements established
- 2. Call open to experts/scientists worldwide
- 3. 16 (joint) proposals received and reviewed
- 4. 15 proposals were selected but now uncertain/no longer valid due to launch delays
 - ⇒ DELTA AO CAL/VAL CALL NEEDED

Aeolus AO delta-call Objectives:

- 1. Allow for confirmation/update of current proposals
- 2. Attract new proposals

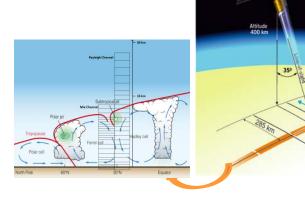
CAL/VAL Schedule:

- Delta-call release: 1 May 2014, http://earth.esa.int/aos/AeolusCalVal
- 2. Phase E1 preparatory CAL/VAL Workshop end 2014 / early 2015:
 - a. Refinement of CAL/VAL plan and compile implementation plan
 - campaigns planning and coordination amongst AO proposals and external campaigns
- 3. Launch (End 2015)
- 4. Phase E1 CAL/VAL Workshop/meeting (date TBC)
- 5. Phase E CAL/VAL monitoring and Workshops (coordinated by Mission Manager)

Scientific Cal/Val Requirements

- 1. Understanding of the products and product properties
- 2. Establish product requirements (Mission Requirements Document)
- 3. Areas of special attention:
 - a. Atmospheric sampling by the space-borne and validation instrumentation
 - Horizontal (scene dependent)
 - Vertical (scene and commanding dependent)
 - Variable along the orbit
 - b. Space-borne and validation product quality as function of
 - measurement and retrieval technique
 - atmospheric scene (clear and cloudy products, use of a-priori)
 - c. Complementarity of different validation techniques
 - Validation over different spatial and temporal scales
 - Different information content
 - d. Co-location criteria
 - e. ...

Aeolus sampling and CAL/VAL requirements


1. Reference orbit: Equat. cros. time ascend node: 18:00 LT

2. Repeat cycle: 7 days

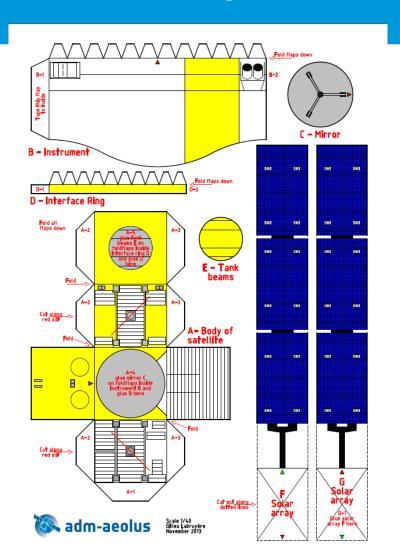
3. Track spacing: 285 km, no ref. ground track

4. Example orbital coverage - one repeat cycle:

Prepared by T. Kanitz

- 5. ADM-Aeolus: Scientific Cal. and Val. Requirements
 - a. Detail Aeolus specifics concerning its wind and aerosol products and areas for special CAL/VAL attention:
 - Available at http://earth.esa.int/aos/AeolusCalVal

Conclusions


- 1. Pre-Launch campaign in Planning
- 2. Baseline to perform campaign in spring 2015
- 3. CAL/VAL AO delta-call released: 1 May 2014, deadline 15 July
- 4. The Aeolus off-line L2a optical properties products will be made available to users off-line (now every 12 hours) but could in the future become available every 4 hours or more often
- 5. Launch: End 2015

You want to build your own?

Questions?

http://www.esa.int/esaKIDSen/SEMVZ46Y3EE_Earth_0.html